Tag Archives: ADAS

Electric Electronics

Galvanic Isolation Secures New 48-volt Electrical Architectures

KDPOF Delivers Optical Connectivity for Battery Management Systems and Integrated Smart Antenna Modules

Galvanic Isolation Secures New 48-volt Electrical Architectures

KDPOF’s optical connectivity provides galvanic isolation for Battery Management Systems and Smart An

KDPOF – leading supplier for gigabit transceivers over POF (Plastic Optical Fiber) – provide their optical connectivity technology in order to secure new 48-volt electrical architectures via the inherent galvanic isolation. „The new 48-volt electrical architecture pushes the envelope in terms of electromagnetic compatibility and safety requirements,“ stated Carlos Pardo, CEO and Co-founder of KDPOF. „New safety precautions are needed, since even a single malfunction between the 48-volt and the 12-volt electrical system will lead to a short circuit, which can damage the entire 12-volt system due to overvoltage.“ Optical connections with POF, such as KDPOF’s innovative Automotive Gigabit Ethernet POF (GEPOF), provide the optimal means to achieve galvanic isolation, providing 100 Mbps and 1 Gbps Ethernet compatible solutions with enough margin to withstand the harsh automotive environment. Applications such as Battery Management Systems (BMS) and Integrated Smart Antenna (ISA) modules profit from the inherent Electromagnetic Compatibility (EMC) of POF. KDPOF will present their GEPOF technology at the Automotive Ethernet Congress on February 13 and 14, 2019 in Munich, Germany.

48 Volts Generate Need for Galvanic Isolation

The chassis is a common ground potential for all 48-volt ECUs in the car. As the chassis has a non-zero impedance, a significant return current will be conducted through it, and a portion of this return current will find its way through a parallel path: the copper cables“ shielding. „An OEM has stated that the shield of Shielded Twisted Pair (STP) cables can conduct more than 8A of return current due to the 48-volt jump start effect,“ added Carlos Pardo.

In addition, the need for a ubiquitous communications network within the vehicle, and particularly between ECUs belonging to different voltage domains, represents a source of potential hazards. Thus, it imposes the additional requirement of galvanic isolation between the communicating nodes. Any event that could cause the 48-volt to cross into the 12-volt, for example due to line transceivers that don“t provide sufficient galvanic isolation, might destroy the ECUs in the 12-volt domain.

With regulations driving car companies to reduce Greenhouse Gas (GHG) emissions further by 2021, a new hybrid architecture concept based on a two-voltage power line (12-/48-volt) is already in the advanced marketing announcements of OEMs and Tier-1. As a further example of this new industry-wide technological trend towards 48V power supply and the handling of it, the German VDA published recommendation 320, which covers electric and electronic components in vehicles for the development of a 48-volt power supply. It defines requirements, test conditions and tests performed on electric, electronic and mechatronic components and systems for use in motor vehicles with a 48-volt on-board power supply.

Battery Management Systems

Galvanic isolation is also necessary between the primary and secondary systems of both ac-dc and dc-dc converters due to the presence of hazardous high voltage (above 25 Vac or 60 Vdc). According to the FMVSS 305 and ECE-R standards, the isolation barrier between the battery and exposed conductive parts should maintain 500 /V before and after a crash impact. „This is a tough requirement that is very hard to reach without a nearly perfect isolation that copper-based networks are unable to ensure,“ added Carlos Pardo. Moreover, the BMS is a very noisy environment and communications are susceptible to disturbance by conducted and radiated RF emissions. Optical communications have been demonstrated to be the most robust regarding EMC.

Smart Antenna Modules

Integrated Smart Antenna (ISA) Modules consist of several antennas for signal reception, an Antenna Hub, and an Ethernet connection to the consumers of the antenna signals such as a radio device. If each of the several antennas in a car is routed to its respective ECU with its own cable, the complexity soon becomes unacceptable. The Antenna Hub routes all signals from each antenna to an Ethernet network connected to all receptors of the signals. Gigabit Ethernet over POF is ideally suited for an Ethernet connection due to its natural EMC-free property. „In conventional systems, if the roof is not metallic, or has openings, an immense amount of energy is radiated by the coaxial cable that is coupled back into the ISA. This seriously degrades the ISA performance,“ explained Carlos Pardo. Replacing the coaxial cable with POF completely solves this issue.

About KDPOF

Fabless semiconductor supplier KDPOF provides innovative gigabit and long-reach communications over Plastic Optical Fiber (POF). Making gigabit communication over POF a reality, KDPOF technology supplies 1 Gbps POF links for automotive, industrial, and home networks. Founded in 2010 in Madrid, Spain, KDPOF offer their technology as either ASSP or IP (Intellectual Property) to be integrated in SoCs (System-on-Chips). The adaptive and efficient system works with a wide range of optoelectronics and low-cost large core optical fibers, thus delivering carmakers low risks, costs and short time-to-market.

Company-Contact
KDPOF
Óscar Ciordia
Ronda de Poniente 14 2ºA
28760 Tres Cantos
Phone: +34 91 8043387
E-Mail: ma@ahlendorf-communication.com
Url: http://www.kdpof.com

Press
ahlendorf communication
Mandy Ahlendorf
Hermann-Roth-Straße 1
82065 Baierbrunn
Phone: +49 89 41109402
E-Mail: ma@ahlendorf-communication.com
Url: http://www.ahlendorf-communication.com

Elektronik Medien Kommunikation

Galvanische Trennung macht neue 48-Volt-Bordnetzarchitektur sicher

KDPOF stellt optische Konnektivität für Batteriemanagement-Systeme und integrierte Smart-Antenna-Module bereit

Galvanische Trennung macht neue 48-Volt-Bordnetzarchitektur sicher

KDPOFs optische Netzwerktechnologie bietet eine galvanische Trennung für Batteriemanagement-Systeme

KDPOF – führender Anbieter für Gigabit-Transceiver über POF (Polymere optische Faser) – macht mit seiner optischen Verbindungstechnologie dank der inhärenten galvanischen Trennung die neue 48-Volt-Bordnetzarchitektur sicher. „Die neue 48-Volt-Bordnetzarchitektur reizt die Grenzen der elektromagnetischen Verträglichkeit und der Sicherheitsanforderungen für Batteriemanagement-Systeme aus“, erläutert Carlos Pardo, CEO und Mitgründer von KDPOF. „Es bedarf neuer Sicherheitsvorkehrungen, denn bereits eine einzige Störung zwischen dem 48- und dem 12-Volt-Elektrosystem löst einen Kurzschluss aus, der aufgrund der Überspannung das gesamte 12-Volt-System beschädigen kann.“ Optische Verbindungen mit POF, wie das innovative Automotive Gigabit Ethernet POF (GEPOF) von KDPOF, sind eine optimale Methode für die galvanische Trennung, da sie Ethernet-kompatible Lösungen mit 100 Mbit/s und 1 Gbit/s sowie ausreichend Toleranz bieten, um in der rauen Automotive-Umgebung zu bestehen. Anwendungen wie Batteriemanagement-Systeme (BMS) und integrierte Smart-Antenna-Module profitieren von der inhärenten elektromagnetischen Verträglichkeit (EMV) von POF. KDPOF präsentiert seine GEPOF-Technologie auf dem Automotive Ethernet Congress am 13. und 14. Februar 2019 in München.

48 Volt erfordern galvanische Trennung

Das Chassis stellt ein gemeinsames Massepotenzial sämtlicher 48-Volt-Steuergeräte im Fahrzeug. Da die Impedanz des Chassis ungleich Null ist, wird ein erheblicher Teil des Rückstroms darüber abgeleitet; und ein Anteil des Rückstroms bahnt sich seinen Weg parallel: über die Abschirmung der Kupferkabel. „Ein OEM hat festgestellt, dass die Abschirmung von verdrillten, geschirmten Kabeln (Shielded Twisted Pair, STP) aufgrund des 48-Volt Starteffekts über 8A Rückstrom leiten kann“, ergänzt Carlos Pardo.

Die Notwendigkeit für ein allumfassendes Kommunikationsnetz im Fahrzeug, und speziell zwischen Steuergeräten, die unterschiedlichen Spannungsdomänen angehören, stellt zudem eine mögliche Gefahrenquelle dar. Folglich ist eine galvanische Trennung zwischen den Kommunikationsknoten notwendig. Jedes Ereignis, bei dem sich das 48- mit dem 12-Volt-System verbindet, beispielsweise aufgrund von nicht ausreichend galvanisch getrennten Leitungstransceivern, könnte die Steuergeräte im 12-Volt-Bereich zerstören.

Als Reaktion auf die Forderungen nach einer weiteren Reduktion der Treibhausgase bis 2021 kündigen OEMs und Tier1 für die nahe Zukunft neue Hybrid-Architekturkonzepte auf Basis zweier Versorgungsspannungen (12-/48-Volt) an. Ein weiteres Beispiel für den neuen, industrieweiten Technologietrend hin zu 48V Spannungsversorgung und dem Umgang mit ihr, ist die VDA 320 – eine Empfehlung für elektrische und elektronische Komponenten im Fahrzeug für die Entwicklung eines 48-Volt-Bordnetzes. Sie definiert Anforderungen, Prüfbedingungen und Prüfungen an elektrische, elektronische und mechatronische Komponenten und Systeme für den Einsatz in Kraftfahrzeugen mit einem 48-Volt-Bordnetz.

Batteriemanagement-Systeme

Auch die primären und sekundären Systeme der AC/DC- und DC/DC-Wandler müssen aufgrund der gefährlich hohen Spannung (über 25 Volt Wechselspannung oder 60 Volt Gleichspannung) galvanisch entkoppelt sein. Gemäß den Standards FMVSS 305 und ECE-R sollte vor und nach einem Aufprall eine Isolationssperre von mindestens 500 /V zwischen der Batterie und der elektrischen Masse erhalten bleiben. „Das ist eine hohe Anforderung, die ohne eine nahezu perfekte galvanische Trennung, wie sie Kupfer-basierte Netzwerke nicht leisten können, nicht zu erreichen ist“, ergänzt Carlos Pardo. Zudem ist das BMS eine sehr rauschintensive Umgebung und die Kommunikation anfällig für Störungen durch geleitete und eingestrahlte HF-Emissionen. Optische Verbindungen haben sich bezüglich EMV am robustesten erwiesen.

Smart-Antenna-Modul

Ein integriertes Smart-Antenna-Modul (ISA) besteht aus mehreren Antennen zum Empfang von Signalen, einem Antennen-Hub und einer Ethernet-Verbindung zu den Abnehmern des Antennensignals wie beispielsweise einem Radiotuner. Führte von jeder der verschiedenen Antennen im Auto ein eigenes Kabel zu ihrem entsprechenden Steuergerät, würde die Komplexität schnell unübersichtlich. Gigabit-Ethernet über POF eignet sich aufgrund seiner inhärenten EMV ideal für diese Verbindung. „Ist das Dach nicht metallisch oder hat es Öffnungen, setzt ein Koaxialkabel in einem konventionellen System eine große Energiemenge frei, die in das ISA zurückgestreut wird. Das beeinträchtigt die Leistung des ISA erheblich“, erläutert Carlos Pardo. POF anstelle des Koaxialkabels löst das Problem vollständig.

Über KDPOF

Das Fabless-Halbleiterunternehmen KDPOF bietet innovative Gigabit- und Langstrecken-Kommunikation über POF (Plastic Optical Fiber). KDPOF lässt die Gigabit-Vernetzung über POF Wirklichkeit werden, indem die KDPOF-Technologie POF-Links mit 1 GBit/s für Automobil, Industrie- und Heimnetzwerke bereitstellt. Das 2010 in Madrid, Spanien, gegründete Unternehmen bietet seine Technologie entweder als ASSP (Application Specific Standard Product) oder als IP (Intellectual Property) für die Integration in System-on-Chips (SoCs) an. Das adaptive und effiziente System funktioniert mit einer großen Bandbreite an optoelektronischen Bauelementen und kostengünstigen optischen Fasern mit großem Kerndurchmesser. Damit gewährleistet KDPOF den Automobilherstellern niedrige Risiken, geringe Kosten und kurze Markteinführungszeiten.

Firmenkontakt
KDPOF
Óscar Ciordia
Ronda de Poniente 14 2ºA
28760 Tres Cantos
+34 91 8043387
ma@ahlendorf-communication.com
http://www.kdpof.com

Pressekontakt
ahlendorf communication
Mandy Ahlendorf
Hermann-Roth-Straße 1
82065 Baierbrunn
+49 89 41109402
ma@ahlendorf-communication.com
http://www.ahlendorf-communication.com

Electric Electronics

Gigabit data logger for high-speed and ADAS applications

Validation of intelligent radar sensors improves the safety of autonomous driving

Gigabit data logger for high-speed and ADAS applications

Real traffic situations can be stored and replicated repeatedly in the laboratory. (Source: embedded brains GmbH)

For the development and validation of systems for autonomous vehicle management, real traffic scenarios are usually simulated and tested in the laboratory. Since pre-processing is carried out directly in the sensor front end with modern radar sensors, this can result in a serious gap in coverage during the testing and validation of object detection. In addition, the optimization of algorithms for testing in real traffic is very complex and seldom reliable.

The DP²4R Gigabit data logger collects raw radar signals between the sensor and preprocessing. The stored signals can then be fed back via the same interface. This allows real traffic situations to be replicated repeatedly in the laboratory and to optimize the processing chain of radar signals. The testing and validation of radar signal processing can be moved from the road to the laboratory. This saves time and allows the reliability of the data processing to be documented.

The special approach of the DP²4R data logger is to read raw data by means of a data head directly coupled to the radar sensor, store it and later feed it back in the laboratory. This requires a high data rate of more than 300Mbit/s per sensor, which is why these data can not be transferred via the system bus.

For practical aspects of data analysis, apart from raw sensor data, other context-specific data like pictures from a camera and GPS position data can be recorded with synchronous precision.

The so-called „head unit“ is based on a standardized unit which is specifically tailored to each sensor in order to enable safe and interference-free signal scanning as well as re-injection of the raw data. The sampled information is transmitted together with a time stamp via an internal interface to the central unit.

The central unit consists of a car PC with a special insert card. Up to four head units with a cable length of 7m can be connected to it. An even larger number of head units can be connected via a second or third card slot.

For data storage, there are several „hot-plugged“ SSD drives, which can be used to record data of any length by changing the media during recording. Other arrangements of storage media, such as aggregated RAID systems, can also be easily implemented. The entire hardware has been designed for the environmental conditions within the vehicle.

The system is controlled via Ethernet with a machine-readable xhtml interface or a web browser. The external data transfer is carried out via Gigabit Ethernet or through media change.

The concept has been designed for future extension with additional sensors with a larger number of antennas and higher radar frequency.

Technical specifications

> DP²4R Head-Unit Hardware, specifically adapted to the respective radar sensor
> Flexibly customizable for almost any type of processor
> DP²4R Controller hardware and OS based on standard components
> 1 to 4 head units can be recorded at the same time
> 320 Mbit/s recording rate per head unit
> Data recording without interference with the radar function
> Camera and GPS data, and more. Can be recorded synchronously
> 2TB storage capacity (> 2 hours), expandable by removable drives
> 9-32 V power supply
> Resistant to environmental conditions in the vehicle
> Controller based on Linux with hmtl/xhtml interface

About the embedded brains GmbH

embedded brains GmbH, with head office near Munich, is an owner-operated German company that specializes in customized software and hardware development for high-performance single and multicore systems. The company was founded in 2005 by the electrical engineers Peter Rasmussen and Thomas Doerfler. Both have more than 20 years of experience and technical expertise in systems development, primarily in the fields of automotive technology, telecommunications and industrial automation, and worked previously as consultants and employees for Dornier, Eurocopter, Siemens, Alcatel Siemens, Thomson, Telenorma and Hilf Microcomputer-Consulting.

The managing directors and their development team advise and support companies from different sectors over the entire development process and with the help of partner companies also deal with series production and fabrication after the completion of prototype development. E&K Automation, Bang & Olufsen, Fraunhofer ESK and Fraunhofer ITWM, Tyco Electronics, MAN Diesel & Turbo as well as Bosch Rexroth AG, among others, are the customers of embedded brains. www.embedded-brains.de

Company-Contact
embedded brains GmbH
Thomas Dörfler
Dornierstr. 4
82178 Puchheim
Phone: 49 (0)89-18 94741-00
E-Mail: info@embedded-brains.de
Url: http://www.embedded-brains.de

Press
Lermann Public Relations
Sylvia Lermann
Enzianstr. 2c
85591 Vaterstetten
Phone: +49 (0)8106-300 899
E-Mail: sylvia@lermann-pr.com
Url: http://www.lermann-pr.com

Electric Electronics

JASPAR Grants Compliance Approval to KDPOF Automotive Optical Gigabit Ethernet

KD1053 1000BASE-RHC Automotive Ethernet PHY Surpasses Stringent Operational Performance Benchmarks Set by JASPAR

JASPAR Grants Compliance Approval to KDPOF Automotive Optical Gigabit Ethernet

JASPAR approves compliance for KDPOF automotive optical Gigabit Ethernet KD1053

JASPAR (Japan Automotive Software Platform and Architecture) announced that KDPOF’s automotive optical Gigabit Ethernet technology has successfully achieved their conformance tests. With the KD1053, KDPOF provides the first IEEE® Std 802.3bv compliant automotive 1000BASE-RHC PHY to deliver 1 Gbit/s data rates over Plastic Optical Fiber (POF). Hideki Goto, Chairman of JASPAR“s Next Generation High-Speed Network Working Group and Group Manager at Toyota stated: „KDPOF’s optical network solution greatly improves the speed of automotive networks and moves beyond obsolete, lagging networking protocols. Optical Ethernet technology is ideal for future in-vehicle network infrastructure, since it provides a radiation-free harness, and thus meets prerequisites concerning electromagnetic compatibility (EMC). Higher speeds are achieved by wider use of the electromagnetic spectrum, which forces OEMs to impose more and more stringent emissions limits on electronic components.“

Established in 2004, JASPAR’s mission is to identify the common issues to be faced in the future by the car electronics sector and initiate standardization in order to resolve these issues and encourage the resulting objectives across the entire automotive industry. Among over 220 member companies are leading global carmakers and Tier1 suppliers such as Toyota, Honda, Mazda, Nissan, and Denso and so on.

Comprehensive EMC Testing

Diverse Tier1 and Tier2 carmakers have carried out evaluation tests on KDPOF’s KD1053-based development boards in coordination with JASPAR. The wide-ranging test scopes included EMC emissions and immunity tests, plus extreme temperature testing with standard automotive POF and optical connectors compliant with current ISO 21111-4 CD. EMC included radiated and conducted emissions (voltage and current), bulk current injection (BCI) testing, radiated RF immunity, and portable handy transmitters immunity. In addition, electrostatic discharge (ESD) and transient pulses were performed. The KD1053 solution achieved all test standards by a remarkable margin.

Automotive Innovation Roadmap

„Our core objective at JASPAR is to generate an environment that enables those serving the Japanese automotive sector to cooperate and push automotive innovation further,“ added Hideki Goto. „We are very pleased with the results achieved with this joint test project.“

About JASPAR
Focused on the Japanese automotive market, JASPAR was established in order to pursue increasing development efficiency and ensuring reliability, by standardization and common use of electronic control system software and in-vehicle networks as they become more advanced and complex. Engineering staff from various car manufacturers, research institutes, academic establishments, software developers, electrical equipment suppliers, and semiconductor vendors all participate in its activities. To learn more, please visit: www.jaspar.jp/en/about_us

About KDPOF

Fabless semiconductor supplier KDPOF provides innovative gigabit and long-reach communications over Plastic Optical Fiber (POF). Making gigabit communication over POF a reality, KDPOF technology supplies 1 Gbps POF links for automotive, industrial, and home networks. Founded in 2010 in Madrid, Spain, KDPOF offer their technology as either ASSP or IP (Intellectual Property) to be integrated in SoCs (System-on-Chips). The adaptive and efficient system works with a wide range of optoelectronics and low-cost large core optical fibers, thus delivering carmakers low risks, costs and short time-to-market.

Company-Contact
KDPOF
Óscar Ciordia
Ronda de Poniente 14 2ºA
28760 Tres Cantos
Phone: +34 91 8043387
E-Mail: ma@ahlendorf-communication.com
Url: http://www.kdpof.com

Press
ahlendorf communication
Mandy Ahlendorf
Hermann-Roth-Straße 1
82065 Baierbrunn
Phone: +49 89 41109402
E-Mail: ma@ahlendorf-communication.com
Url: http://www.ahlendorf-communication.com

Elektronik Medien Kommunikation

JASPAR erteilt Compliance-Zulassung an optisches Automotive Gigabit-Ethernet von KDPOF

KD1053 1000BASE-RHC Automotive Ethernet PHY übertrifft JASPARs strenge Benchmarks für die operativen Vergleichsparameter

JASPAR erteilt Compliance-Zulassung an optisches Automotive Gigabit-Ethernet von KDPOF

JASPAR bescheinigt Compliance für KDPOFs optischen Automotive Gigabit-Ethernet-Transceiver KD1053

JASPAR (Japan Automotive Software Platform and Architecture) gibt bekannt, dass die optische Automotive Gigabit-Ethernet-Technologie von KDPOF die Konformitätstests von JASPAR erfolgreich bestanden hat. Mit dem KD1053 bietet KDPOF den ersten automotive 1000BASE-RHC PHY, der den IEEE®-Standard 802.3bv erfüllt und Datenraten von 1 GBit/s über optische Polymerfasern (Plastic Optical Fiber, POF) überträgt. Hideki Goto, Leiter der JASPAR-Arbeitsgruppe ‚Hochgeschwindigkeitsnetzwerke der nächsten Generation‘ und Gruppenmanager bei Toyota erläutert: „Die optische Netzwerklösung von KDPOF verbessert die Geschwindigkeit von Netzwerken im Fahrzeug erheblich und bewegt sich jenseits überholter, rückständiger Netzwerkprotokolle. Die optische Ethernet-Technologie eignet sich ideal für die zukünftige Netzwerk-Infrastruktur im Fahrzeug, da sie einen strahlungsfreien Kabelbaum bietet und damit die Anforderungen der elektromagnetischen Verträglichkeit (EMV) erfüllt. Höhere Geschwindigkeiten erreichen wir durch eine breitere Nutzung des elektromagnetischen Spektrums. Das zwingt die OEMs, immer strengere Emissionsgrenzwerte für die elektronischen Komponenten zu verhängen.“

Seit der Gründung 2004 macht es sich JASPAR zur Aufgabe, die gemeinsamen, anstehenden Herausforderungen auf dem Sektor der Automobilelektronik zu identifizieren und entsprechende Standardisierungen zu initiieren, um diese Herausforderungen zu lösen und die resultierenden Ziele der gesamten Automobilindustrie zu empfehlen. Zu den über 220 Mitgliedsunternehmen gehören führende internationale Fahrzeughersteller und Tier1-Zulieferer wie Toyota, Honda, Mazda, Nissan, Denso und weitere.

Umfassende EMV-Tests

Verschiedene Tier1- und Tier2-Automobilhersteller haben in Zusammenarbeit mit JASPAR Evaluierungstest an KD1053-Entwicklungsboards von KDPOF durchgeführt. Die umfangreichen Testumfänge umfassten EMV-Emissions- und Immunitätsprüfungen sowie Tests zu extremen Temperaturen mit automotive Standard POF- und optischen Steckverbindern nach aktuellem ISO 21111-4 CD Standard. Zu den EMV-Tests gehörten gestrahlte und leitungsgeführte Emissionen (Spannung und Stromstärke), Bulk Current Injection (BCI), abgestrahlte HF-Störfestigkeit und Immunität gegen Sender tragbarer Mobilgeräte. Zudem haben sie auf elektrostatische Entladung (ESD) und transiente Impulse getestet. Die KD1053-Lösung hat alle Teststandards mit einem beachtlichen Abstand erfolgreich absolviert.

Automotive Innovations-Roadmap

„Unser Hauptanliegen bei JASPAR ist es, allen, die dem japanischen Automobilsektor dienen, ein Umfeld zu schaffen, in dem sie gut kooperieren und Innovationen weiter vorantreiben können“, ergänzt Hideki Goto. „Wir freuen uns sehr über die Ergebnisse des gemeinsamen Testprojekts.“

Über JASPAR
Mit Fokus auf den japanischen Automobilmarkt wurde JASPAR gegründet, um eine höhere Entwicklungseffizienz zu erreichen und Zuverlässigkeit sicherzustellen. Dies wird ermöglicht durch Standardisierung und gemeinsame Nutzung von Software für elektronische Steuergeräte und Fahrzeugnetzwerke, da diese immer höher entwickelt und komplexer werden. Zu den Aktivitäten tragen Ingenieurteams von verschiedenen Automobilherstellern, Forschungsinstituten, Bildungseinrichtungen, Software-Entwicklern, Anbieter elektronischer Anlagen sowie Halbleiterunternehmen bei. Weitere Informationen stehen hier zur Verfügung: http://www.jaspar.jp/en/about_us

Über KDPOF

Das Fabless-Halbleiterunternehmen KDPOF bietet innovative Gigabit- und Langstrecken-Kommunikation über POF (Plastic Optical Fiber). KDPOF lässt die Gigabit-Vernetzung über POF Wirklichkeit werden, indem die KDPOF-Technologie POF-Links mit 1 GBit/s für Automobil, Industrie- und Heimnetzwerke bereitstellt. Das 2010 in Madrid, Spanien, gegründete Unternehmen bietet seine Technologie entweder als ASSP (Application Specific Standard Product) oder als IP (Intellectual Property) für die Integration in System-on-Chips (SoCs) an. Das adaptive und effiziente System funktioniert mit einer großen Bandbreite an optoelektronischen Bauelementen und kostengünstigen optischen Fasern mit großem Kerndurchmesser. Damit gewährleistet KDPOF den Automobilherstellern niedrige Risiken, geringe Kosten und kurze Markteinführungszeiten.

Firmenkontakt
KDPOF
Óscar Ciordia
Ronda de Poniente 14 2ºA
28760 Tres Cantos
+34 91 8043387
ma@ahlendorf-communication.com
http://www.kdpof.com

Pressekontakt
ahlendorf communication
Mandy Ahlendorf
Hermann-Roth-Straße 1
82065 Baierbrunn
+49 89 41109402
ma@ahlendorf-communication.com
http://www.ahlendorf-communication.com

Elektronik Medien Kommunikation

KYOCERA präsentiert Innovations-Feuerwerk auf der electronica 2018

Auch in diesem Jahr stellt Kyocera seine vielfältigen Produkte – von Displays bis zu Halbleiter-Bauteilen – auf der electronica in München vor. Vom 13. bis zum 16. November 2018 ist der Hersteller in Halle B6 am Stand 536 zu finden.

Kyoto/Neuss, 23. Oktober 2018. Auf der electronica, der internationalen Leitmesse für die Elektronik-Industrie, werden jährlich innovative Technologien und Trends vorgestellt. Tausende Aussteller wirken auf der Messe mit und beweisen, wie breit und abwechslungsreich Produktpalette und Anwendungsgebiete sind. Kyocera präsentiert dieses Jahr eine Fülle neuer Produkte aus den unterschiedlichen Bereichen des Unternehmens.

Industry 4.0: Klare Sicht und fühlbares Feedback
Im Display-Bereich zeigt Kyocera erstmals seine innovativen MicroLEDs. Anders als bei LCDs sind die Pixel der MicroLEDs selbstleuchtend und bestehen aus wenigen µm-großen LEDs.Vorteile gegenüber LCDs sind sehr hohe Helligkeit und Kontrast sowie lange Lebensdauer. Weitere Highlights im Display-Bereich sind 3D Head-Up Displays (HUD) im ADAS-Segment und die patentierte Haptivity®(1) Technologie, in einem 7-Zoll-Display integriert. Zudem stellt das Unternehmen Displays mit InCell Camera vor. Diese innovative Technologie sorgt dafür, dass der Fahrer die Kamera nicht wahrnimmt und somit nicht abgelenkt wird.

Komponenten für fortschrittliche Themomanagement-Systeme
Neben der Display-Technologie stellt Kyocera aus dem Bereich Automotive Components sein neues Peltier-Element für fortschrittliche Thermomanagement-Systeme vor. Aus dem Bereich Electronic Components, der erstmals auf der Electronica vertreten sein wird, werden MLCC, Quartzprodukte und Power Devices präsentiert.

Halbleiterprodukte verhindern Abhandenkommen von Instrumenten
Im Halbleitersegment zeigt Kyocera seine Ultra-Hochfrequenz-RFID-Transponder mit robustem Keramikgehäuse, die sich auch auf Metall befestigen lassen. Dadurch eignen sie sich für das zuverlässige Tracking von Werkzeugen in vielfältigen Bereichen. Als weitere Innovationen des japanischen Herstellers im Halbleitersegment zählt zudem das Torokeru Sheet, auch T-Sheet genannt. Diese Folie schmilzt bei Wärmeeinfluss und versiegelt dadurch ganze elektronische Baugruppen passgenau.
Um Distanzen zu messen, wird immer mehr die optische Fernerkundungstechnik LiDAR angewandt. Kyocera entwickelt und produziert hierfür die notwendigen Gehäuse und Substrate für sogenannte Pulslaser. LiDAR steht dabei für Light Detection and Ranging, zu Deutsch Lichtdetektion und -entfernung.

Feinkeramikkomponenten mit exzellenter Hermetik
Die Sparte Feinkeramikkomponenten wartet mit der Laminiertechnologie für Wärmetauscher und Kühlkörperanwendungen auf. Außerdem werden komplexe und präzise Strukturen für Drucksensoren und metallisierte Keramikbauteile mit Hochvoltresistenz und exzellenter Hermetik gezeigt. Feinkeramische Bauteile werden nicht nur in hochvolumiger Serienfertigung produziert, sondern auch für Nischenanwendungen mit hoher Produktzuverlässigkeit.

(1) HAPTIVITY® ist eine eingetragene Marke von Kyocera

Die Kyocera Corporation mit Hauptsitz in Kyoto ist einer der weltweit führenden Anbieter feinkeramischer Komponenten für die Technologieindustrie. Strategisch wichtige Geschäftsfelder der aus 264 Tochtergesellschaften (31. März 2018) bestehenden Kyocera -Gruppe bilden Informations- und Kommunikationstechnologie, Produkte zur Steigerung der Lebensqualität sowie umweltverträgliche Produkte. Der Technologiekonzern ist weltweit einer der ältesten Produzenten von Solarenergie-Systemen, mit mehr als 40 Jahren Branchenerfahrung. 2017 belegte Kyocera Platz 522 in der „Global 2000“-Liste des Forbes Magazins, die die größten börsennotierten Unternehmen weltweit beinhaltet.

Mit etwa 75.000 Mitarbeitern erwirtschaftete Kyocera im Geschäftsjahr 2017/2018 einen Netto-Jahresumsatz von rund 12,04 Milliarden Euro. In Europa vertreibt das Unternehmen u. a. Drucker und digitale Kopiersysteme, mikroelektronische Bauteile und Feinkeramik-Produkte. Kyocera ist in Deutschland mit zwei eigenständigen Gesellschaften vertreten: der Kyocera Fineceramics GmbH in Neuss und Esslingen sowie der Kyocera Document Solutions in Meerbusch.

Das Unternehmen engagiert sich auch kulturell: Über die vom Firmengründer ins Leben gerufene und nach ihm benannte Inamori-Stiftung wird der imageträchtige Kyoto-Preis als eine der weltweit höchstdotierten Auszeichnungen für das Lebenswerk hochrangiger Wissenschaftler und Künstler verliehen (umgerechnet zurzeit ca. 764.000 Euro*).

Firmenkontakt
Kyocera
Daniela Faust
Hammfelddamm 6
41460 Neuss
02131/16 37 188
02131/16 37 150
daniela.faust@kyocera.de
http://www.kyocera.de

Pressekontakt
Serviceplan Public Relations & Content
Benjamin Majeron
Brienner Str. 45 a-d
80333 München
089/2050 4193
b.majeron@serviceplan.com
http://www.kyocera.de

Automotive Traffic

Autonomous Driving: Optical Data Network Enhances Safety

KDPOF Demos Seamless and EMC-compliant Network Integration at AESIN Conference and at IEEE SA Ethernet & IP @ Auto Tech Day

Autonomous Driving: Optical Data Network Enhances Safety

KDPOF’s optical data network enhances safety for autonomous driving

KDPOF – leading supplier for gigabit transceivers over POF (Plastic Optical Fiber) – provides their optical network technology in order to enhance safety for autonomous driving. „For safety-related functions such as the data network backbone, autonomous driving requires redundant systems in order to increase safety and avoid the autonomous car locking up if one of the systems is disabled in some way,“ explained Ruben Perez de Aranda, CTO and Co-founder of KDPOF. Reliability analysis shows that a technology redundancy like optical and copper cabling provides the highest reliability. Consequently, more and more OEMs are now considering Plastic Optical Fiber. KDPOF will demonstrate the seamless and EMC-compliant network integration with POF at the AESIN (Automotive Electronics Innovation) Conference on October 2, 2018 in Solihull, UK, and at the IEEE-SA Ethernet & IP @ Automotive Technology Day on October 9-10, 2018 in London, UK.

EMC Lessons Learned on Gigabit Ethernet Implementation for ADAS & AV

In his presentation „EMC Lessons Learned on Gigabit Ethernet Implementation for ADAS & AV“ at the AESIN Conference on October 2, 2018 at 16:30, Ruben Perez de Aranda will describe the lessons learned in the iterative design process with the final goal of bringing into the market a mass-produced automotive Gigabit Ethernet PHY integrated in an ECU and meeting the most stringent EMC specifications. „This grows more important as in-car network speeds increase to accommodate the demands of driverless systems,“ he added. „Higher speeds are achieved by wider use of the electromagnetic spectrum.“ This situation makes the underlying communication system implementation less immune to radiated and conducted noise. It also forces OEMs to impose more and more stringent emissions limits on the electronic components, limits that are often already tighter than the demands imposed by international standards. POF is ideal for the new architectures since it provides natural galvanic isolation between communicating modules and a radiation-free harness.

With the first automotive Gigabit Ethernet POF (GEPOF) transceiver KD1053, KDPOF provides high connectivity with a flexible digital host interface, low latency, low jitter, and low linking time. The transceiver complies with the standard amendment IEEE Std 802.3bv™ and thus fully meets the requirements of carmakers.

About KDPOF

Fabless semiconductor supplier KDPOF provides innovative gigabit and long-reach communications over Plastic Optical Fiber (POF). Making gigabit communication over POF a reality, KDPOF technology supplies 1 Gbps POF links for automotive, industrial, and home networks. Founded in 2010 in Madrid, Spain, KDPOF offer their technology as either ASSP or IP (Intellectual Property) to be integrated in SoCs (System-on-Chips). The adaptive and efficient system works with a wide range of optoelectronics and low-cost large core optical fibers, thus delivering carmakers low risks, costs and short time-to-market.

Company-Contact
KDPOF
Óscar Ciordia
Ronda de Poniente 14 2ºA
28760 Tres Cantos
Phone: +34 91 8043387
E-Mail: ma@ahlendorf-communication.com
Url: http://www.kdpof.com

Press
ahlendorf communication
Mandy Ahlendorf
Schiffbauerweg 5F
82319 Starnberg
Phone: +4981519739098
E-Mail: ma@ahlendorf-communication.com
Url: http://www.ahlendorf-communication.com

Auto Verkehr Logistik

Autonomes Fahren: Optisches Datennetzwerk erhöht Sicherheit

KDPOF zeigt mühelose und EMV-gerechte Netzwerk-Integration auf AESIN-Konferenz und IEEE SA Ethernet & IP @ Auto Tech Day

Autonomes Fahren: Optisches Datennetzwerk erhöht Sicherheit

Das optische Datennetzwerk von KDPOF erhöht die Sicherheit für das autonome Fahren

KDPOF – führender Anbieter für die Gigabit-Vernetzung über POF (Polymere optische Faser) in Fahrzeugen – erhöht mit seiner optischen Netzwerktechnologie die Sicherheit beim autonomen Fahren. „Für sicherheitsrelevante Funktionen wie das Datennetzwerk-Backbone benötigt das autonome Fahren redundante Systeme, um die Verfügbarkeit zu erhöhen“, erläutert Ruben Perez de Aranda, CTO und Mitgründer von KDPOF. „So lässt sich vermeiden, dass das autonome Fahrzeug blockiert, wenn eines der Systeme in irgendeiner Form gestört ist.“ Zuverlässigkeitsanalysen zeigen, dass eine Technologie-Redundanz wie etwa Optik und Kupfer am verlässlichsten ist. Folglich ziehen immer mehr OEMs die optische Polymerfaser in Betracht. KDPOF präsentiert die mühelose und EMV-gerechte Netzwerk-Integration mit POF auf der AESIN (Automotive Electronics Innovation)-Konferenz am 2. Oktober 2018 in Solihull, UK, und auf dem IEEE-SA Ethernet & IP @ Automotive Technology Day vom 9. bis 10. Oktober 2018 in London, UK.

EMV-Erkenntnisse der Gigabit-Ethernet-Implementierung für ADAS und Audio/Video

In seiner Präsentation „Gewonnene EMV-Erkenntnisse der Gigabit-Ethernet-Implementierung für ADAS und Audio/Video“ wird Ruben Perez de Aranda auf der AESIN-Konferenz am 2. Oktober 2018 um 16:30 Uhr Erfahrungen und Erkenntnisse aus dem iterativen Design-Prozess erläutern. Das Ziel ist, einen serienproduzierten automotive Gigabit-Ethernet-Physical-Layer auf den Markt zu bringen, der in ein Steuergerät integriert ist und die strengsten EMV-Spezifikationen erfüllt. „Das wird immer wichtiger, da die Geschwindigkeiten von Fahrzeugnetzwerken ständig steigen, um die Anforderungen von fahrerlosen Systemen zu erfüllen“, ergänzt er. „Höhere Geschwindigkeiten erreichen wir durch eine breitere Nutzung des elektromagnetischen Spektrums.“ Diese Situation verringert die Immunität des zugrundeliegenden Kommunikationssystems gegenüber eingestrahlten und leitungsgebundenen Störungen. Zudem zwingt sie die OEMs, immer strengere Emissionsgrenzwerte für die elektronischen Komponenten zu verhängen: Grenzwerte, die meist bereits strenger sind als die von internationalen Standards erlassenen Forderungen. POF eignet sich daher ideal für die neuen Architekturen, da es eine natürliche galvanische Trennung zwischen den kommunizierenden Modulen und ein strahlungsfreies Kabel bietet.

Mit dem ersten automotive Gigabit-Ethernet-POF (GEPOF)-Transceiver KD1053 bietet KDPOF eine hohe Konnektivität mit einer flexiblen, digitalen Host-Schnittstelle, niedrige Latenz, geringen Jitter sowie eine kurze Aufbauzeit der Verbindung. Der Transceiver entspricht dem Standard-Zusatz IEEE Std 802.3bv™ und erfüllt damit die Anforderungen der Automobilhersteller vollständig.

Über KDPOF

Das Fabless-Halbleiterunternehmen KDPOF bietet innovative Gigabit- und Langstrecken-Kommunikation über POF (Plastic Optical Fiber). KDPOF lässt die Gigabit-Vernetzung über POF Wirklichkeit werden, indem die KDPOF-Technologie POF-Links mit 1 GBit/s für Automobil, Industrie- und Heimnetzwerke bereitstellt. Das 2010 in Madrid, Spanien, gegründete Unternehmen bietet seine Technologie entweder als ASSP (Application Specific Standard Product) oder als IP (Intellectual Property) für die Integration in System-on-Chips (SoCs) an. Das adaptive und effiziente System funktioniert mit einer großen Bandbreite an optoelektronischen Bauelementen und kostengünstigen optischen Fasern mit großem Kerndurchmesser. Damit gewährleistet KDPOF den Automobilherstellern niedrige Risiken, geringe Kosten und kurze Markteinführungszeiten.

Firmenkontakt
KDPOF
Óscar Ciordia
Ronda de Poniente 14 2ºA
28760 Tres Cantos
+34 91 8043387
ma@ahlendorf-communication.com
http://www.kdpof.com

Pressekontakt
ahlendorf communication
Mandy Ahlendorf
Schiffbauerweg 5F
82319 Starnberg
+4981519739098
ma@ahlendorf-communication.com
http://www.ahlendorf-communication.com

Wissenschaft Technik Umwelt

ADAS-Sensoren testen mit Überschallgeschwindigkeit

ADAS-Sensoren testen mit Überschallgeschwindigkeit

Eine System-Validierung auf Basis von realen Fahrdaten ist für OEMS unumgänglich. (Bildquelle: embedded brains GmbH)

Moderne Automobile sind ohne intelligente Sensoren undenkbar. Nur mit zuverlässiger Umwelterfassung können Fahrerassistenzsysteme und autonome Fahrzeuge sicher und fehlerfrei funktionieren. Die Validierung der Sensorik ist damit ein zentraler Schritt auf dem Weg zum automatisierten Fahren und muss bereits während der Sensorkonzeption mit eingeplant werden.

Aktuell beschäftigen zwei unabhängige Umwälzungen die Automobilindustrie: auf der einen Seite die Ablösung der Verbrennungsmotoren durch Elektroantriebe und auf der anderen Seite die Automatisierung des Fahrbetriebs über „Advanced Driver Assistance Systems“ (ADAS) hin zum „Autonomous Vehicle“ (AV). Ein Fahrzeug sicher und zuverlässig zu steuern erfordert eine Vielzahl von Fähigkeiten; nicht umsonst darf ein Mensch erst mit einem bestimmten Maß an Reife und nach einer entsprechenden Ausbildung Fahrzeuge führen. Eine Grundvoraussetzung für den automatisierten Fahrbetrieb ist, die Umwelt nicht nur erfassen, sondern auch ausreichend verstehen zu können: Wo befinden sich Fahrbahn, feste Begrenzungen und Hindernisse, welche Objekte bewegen sich im Umfeld, wo sind potentielle Gefahrensituationen?

Entsprechend intelligente Sensorsysteme sind in Entwicklung und auch schon in einigen Fahrzeugen im Einsatz. Optische Kamerasysteme, laserbasierte LIDARs und Sensoren auf Radar-Basis haben unterschiedliche Stärken und ergänzen sich in modernen Fahrzeugen. Wer die extrem hohen Anforderungen an die Zuverlässigkeit ernst nimmt und sich der Komplexität der Sensorsysteme bewusst ist, befasst sich frühzeitig mit der methodischen Validierung dieser Systeme. Im Hinblick auf den Projektzeitplan, ist die Effizienz der Validierung sogar entscheidend für den Projekterfolg.

Struktur intelligenter Sensorsysteme
Allen Sensor-Funktionsprinzipien ist eine Zweiteilung gemein: das jeweilige Frontend liefert Rohinformationen mit hoher Datenrate, hier sind heute Werte zwischen 100 und 800MBit/sec üblich. Die Rohdaten werden noch innerhalb des Sensorsystems aufbereitet und analysiert. Ans Fahrzeug werden dann die erkannten Objekte gesendet. Das Datenvolumen dieser Objektliste ist wesentlich geringer, es bleibt typischerweise unter 5KByte.

In der Black-Box-Betrachtung hat ein intelligenter Sensor also eine relativ überschaubare Funktion: Rohdaten erfassen, erkannte Objektliste ausgeben. Die Interna sind jedoch ausgesprochen kompliziert: Filterung der Eingangsdaten, Anpassung an die Umweltbedingungen, Störunterdrückung, Objekterkennung, -plausibilisierung, -klassifizierung und -verfolgung basieren auf komplexen Algorithmen und deren adaptiver Parametrierung. Hinzu kommen auch noch die Echtzeitanforderungen der gesamten Verarbeitungskette und, aus Sicht der Wertschöpfung, der Druck zur Kostenoptimierung.

Für die Implementierung dieser Algorithmen brauchen die Entwickler umfassendes Know-how, auch über die Sensorprinzipien, ihre Möglichkeiten und Grenzen. Eine noch größere Herausforderung ist die Validierung des Sensorsystems. Hier sind mehrere Vorgehensweisen denkbar.

Statische Labor-Aufbauten
Erste Funktionstests kann man recht einfach mit entsprechenden Laboraufbauten machen: Statische Bilder für Kamerasysteme, Metall-Reflektoren für Radarsensoren, Testkörper für LIDAR-Systeme. Allerdings lassen sich damit bewegte Objekte nur sehr begrenzt einsetzen. Sobald man vielfältige Szenarien prüfen möchte, stößt man hier an praktische Grenzen.

Testfahrten
Am Ende muss das Sensorsystem sich auf der Straße bewähren. Also ist es auch naheliegend, für die Validierung Testfahrten durchzuführen. Autobahn, Landstraße, Stadtverkehr, schwedische Fernstraßen, die Betriebsamkeit italienischer Städte oder das Durcheinander einer asiatischen Großstadt: Die Vielfalt der Szenarien kann nur in der realen Welt er-fahren werden.

Aber die korrekte Erkennung aller relevanten Objekte ist während der Fahrt schwer zu prüfen: Ein Echtzeitvergleich von Umgebung und erkannter Objektliste über mehrere Stunden, Tage und Wochen überfordert die Konzentrationsfähigkeit der Testingenieure. Und: wenn Abweichungen und Fehlfunktionen festgestellt werden, die Software und Parametrierung daraufhin verbessert werden, verlieren die bisher absolvierten Testfahrten ihre Aussagekraft und müssen wiederholt werden. Und hier zeigen sich die Schwachpunkte dieser Methodik: Weder kann man exakt die gleichen Objektszenarien für die Validierung der Verbesserung herstellen, noch lassen sich auf Kommando die gleichen Wetterbedingungen wieder und wieder hervorzaubern. Testfahrten stellen also einen wertvollen Random-Test dar, sind aber nicht exakt wiederholbar.

Simulation
Testszenarien per Simulation zu erzeugen, hat gegenüber Testfahrten offensichtliche Vorteile: Die Testdaten sind nicht mehr von den zufällig angetroffenen Bedingungen abhängig, sondern können gezielt erzeugt werden. Einmal erstellte Szenarien und Sequenzen lassen sich beliebig oft wiederholen. Bei digitaler Einkopplung der Simulationsdaten finden aufeinanderfolgende Tests sogar bitgenau mit dem selben Input statt. Damit sind zum einen Testergebnisse jederzeit wiederholbar und nachvollziehbar. Zum anderen kann eine verbesserte Sensorsoftware unter exakt den selben Bedingungen geprüft werden wie ihre Vorgänger. Das Labor braucht dabei nicht verlassen zu werden. Neue, als kritisch erkannte Szenarien, können jederzeit hinzugefügt werden. Und: anders als bei Testfahrten, lassen sich auch Szenarien erzeugen, denen man ein reales Testfahrzeug nicht aussetzen kann oder will, etwa Unfallsituationen, extreme Wetterbedingungen oder ähnliches. Ein oft unterschätzter Nachteil der Simulation ist jedoch, dass die Simulationsszenarien durch die Phantasie der Testingenieure begrenzt sind. Die Vielfalt und Komplexität der realen Welt fehlen hier.

Realdaten-Injektion
Die Realdaten-Injektion vereint die Vorteile von Testfahrten mit der Simulation, denn sie bringt reale Umweltszenarien ins Labor. Für diese Validierungsmethode werden während einmalig durchgeführter Fahrten die Rohdaten der Sensorfrontends lückenlos und bitgenau aufgezeichnet. Diese Rohdatensammlung kann dann im Labor in die Sensoren zurückgespeist und zur Validierung neuerer Softwarestände herangezogen werden. Damit werden die Vorteile von Testfahrten und Simulation kombiniert: die Situationsvielfalt der Testfahrten kann beliebig oft in die Sensorsysteme eingespeist werden, und das jedes mal bitgenau.

Aufzeichnung von Realdaten
Wie kann ein System zur Realdatenaufzeichnung aussehen? Für die aufzuzeichnenden Rohdaten eines Sensorsystems stehen praktisch nie fahrzeugtaugliche Schnittstellen zur Verfügung, daher ist ein System, das Realdaten aufzeichnen soll, direkt an das jeweilige Sensorsystem anzukoppeln. Ausserdem sollte es entsprechend kompakt und robust angelegt werden, denn es muss bei den unterschiedlichsten Witterungsbedingungen funktionsfähig bleiben.

Bewährt hat sich ein gesplitteter Aufbau, wie er für das Gigabit-Datenloggersystem DP²4R ausgearbeitet wurde: Eine Zentraleinheit (Controller) wird im Fahrzeug verbaut, diese ist mit großen, wechselbaren SSD-Speichern ausgerüstet und für die Initialisierung, Steuerung und Datenaufzeichnung von bis zu vier abgesetzten Erfassungsköpfen (Head Units) zuständig. Über Gigabit-taugliche Kabel wird der Controller mit den Head Units verbunden. Jede Head Unit wird ihrerseits direkt an die Sensorelektronik angekoppelt und ist auch in deren Gehäuse integriert.

Die Head Unit mit ihrem FPGA ist zuständig für die Datenübernahme von der jeweiligen Sensorelektronik. Da hier je nach Sensorkonzept die verschiedensten Schnittstellen zum Einsatz kommen, muss die Head Unit leicht an die Kundenanforderungen anpassbar sein. Das Designkonzept sollte auch eine mechanische Adaption an die Gegebenheiten des Verbauraums erlauben.

Im Fahrbetrieb sind die Head Units dafür verantwortlich, die Daten von der Sensorelektronik abzuziehen, mit einem Zeitstempel zu versehen, zu formatieren und an den Controller zu senden. Der Controller wiederum aggregiert die Daten aller Head Units und speichert sie gemeinsam ab. Bei der Konzeption ist relativ viel Feinabstimmung nötig, denn die aggregierte Datenrate in einem solchen System übersteigt schnell 1GBit/sec, Konzeptschwächen führen schnell zu Flaschenhälsen. Neben den Sensor-Rohdaten sollten auch Mechanismen zur Dokumentation der Fahrtstrecke vorgesehen sein: GPS-Tracker und eine zusätzliche Kamera-Erfassung der Fahrtstrecke erleichtern die Nachbereitung der Daten.

Archivierung und Upload
Zur Archivierung der Daten dienen handelsübliche NAS(„Network Attached Storage“)-Systeme am Entwicklungsstandort. Allerdings werden sehr hohe Kapazitäten benötigt: Ein Jahr lückenlose Aufzeichnung benötigt eine Speicherkapazität im einstelligen Petabyte-Bereich. Der elegante Weg, um die Daten vom Testfahrzeug zum NAS zu transportieren, wäre ganz klar ein Netzwerkinterface. Allerdings ist damit die praktisch erzielbare Datenrate auf ca. 10Gbit/sec begrenzt. Daher lohnt es sich, stattdessen auf den guten alten „Turnschuhbus“ umzusatteln: die SSDs werden manuell aus der Erfassungs-Zentraleinheit entnommen und direkt ins NAS eingesetzt. Bei fünf Minuten Fußweg vom Fahrzeug zum NAS und zwei SSDs mit je acht TByte Kapazität entspricht das einer Datenrate von etwa 430 Gbit/sec, mit Netzwerkkabeln ist das kaum zu übertreffen. Damit liegen die auf den Testfahrten gesammelten Daten bereit zur weiteren Nutzung, Aufbereitung und Auswertung.

Rohdaten-Injektion
Die gesammelten Rohdaten können vielfältig ausgewertet werden. Der Hauptnutzen liegt jedoch in der Möglichkeit, die Daten wieder in die Sensoren einzuspeisen und deren Reaktionen auszuwerten, in einem klassischen Hardware-in-the-Loop-(HiL)-Aufbau. In diesem Aufbau werden letztendlich wieder ähnliche Komponenten genutzt: An die Sensorsysteme, die validiert werden sollen, werden Head Units angekoppelt, die die Rohdaten jetzt nicht aufzeichnen, sondern statt dem Frontend ins Sensorsystem einspeisen. Die Head Units ihrerseits empfangen die Rohdaten synchron vom Controller, der sie wiederum direkt vom NAS holt.

Automatisierte Qualitätsmetrik
Mit diesem Aufbau durchfahren die Sensorsysteme also die früher aufgezeichneten Sequenzen, und dies sogar noch miteinander synchronisiert. Wird ihr Output Richtung Fahrzeug-Bussystem überwacht und mit den relevanten Objekten verglichen, so kann man die entscheidenden Fähigkeiten der Software nachprüfbar quantifizieren.
Noch existierende Schwachpunkte wie nicht oder falsch erkannte Objekte werden in einem erzeugten Report ausgewiesen. Dieser Report dokumentiert für jeden geprüften Softwarestand nachvollziehbar den erreichten Qualitätslevel.

Beschleunigung
Das Testprinzip anhand der erfassten Rohdaten hat einen praxisrelevanten Nachteil: Die Testsequenzen werden am HiL-Prüfstand in Echtzeit durchfahren, damit dauert der Test allerdings auch genauso lange wie alle zu durchfahrenden Fahrtszenen. In Summe kommt man dann leicht auf einige Monate oder sogar Jahre Prüfzeit, zu lange für einen Abnahmetest und für ein Projekt katastrophal, wenn relevante Lücken in der Erkennungsrate ermittelt werden.

Aber auch diese Herausforderung lässt sich meistern: Mehrere identische HiL-Prüfstände können parallel aufgebaut werden, in einem kompakten Aufbau auch als Farm von bis zu 50 parallelen Clustern. Die Fahrtszenen lassen sich dann auf die HiL-Cluster verteilen, die Testfahrten werden quasi mit 50-facher Geschwindigkeit abgefahren: Aus einer Durchschnittsgeschwindigkeit von 60km/h werden virtuelle 3.000km/h, also etwa dreifache Schallgeschwindigkeit. Eine vollständige Qualifizierung von 12 Monaten Testdaten ist damit innerhalb von 1 Woche möglich. Teiltests (etwa als Vortest nach Softwaremodifikationen) sind eine Frage von Stunden.

Fazit
Intelligente Sensorsysteme als Basis der Fahrzeuge von morgen stellen neue Herausforderungen an die Validierung und Qualitätssicherung der Software. Eine System-Validierung auf Basis von realen Fahrdaten ist für OEMS schon aus versicherungstechnischen Gründen unumgänglich und erlaubt bereits vor der Markteinführung verlässliche Aussagen über die Robustheit der Sensorik.
Verfahren und Systeme hierzu stehen bereit und sind damit als Stand der Technik zu betrachten. Deren Integration sollte frühzeitig in den Entwicklungsprojekten berücksichtigt werden, um die Projektziele rechtzeitig, mit der gebotenen Sorgfalt und sicher zu erreichen.

Ueber die embedded brains GmbH
Die embedded brains GmbH mit Hauptsitz in Puchheim bei Muenchen ist ein inhabergefuehrtes Unternehmen, das auf maßgeschneiderte Soft- und Hardwareentwicklung fuer leistungsstarke Single- und Multicore-Systeme spezialisiert ist. embedded brains steht den Kunden auch als Berater zur Seite und versetzt sie in die Lage, ihr Projekt selbstaendig umzusetzen. Ihre umfangreiche Expertise ermoeglicht es den Experten von embedded brains, Technologien, die sie in einem Bereich etablieren konnten, in einen anderen Bereich zu uebertragen, egal ob Telekommunikation, Industrieautomation, Consumerprodukte, Automotive, Luft- und Raumfahrt. Die Consulting-Leistung reicht von der Konzepterarbeitung, ueber die Erarbeitung von technischen Loesungsmoeglichkeiten bis zu deren Umsetzung.

Das Unternehmen wurde 2005 von den Diplom-Ingenieuren der Elektrotechnik, Peter Rasmussen und Thomas Doerfler, gegruendet. Beide verfuegen ueber mehr als 20 Jahre Erfahrung und fundierte technische Expertise in der Systementwicklung. Zuvor waren beide fuer Unternehmen wie Dornier, Eurocopter, Siemens, Alcatel Siemens, Thomson, Telenorma und Hilf Microcomputer-Consulting als Berater und Mitarbeiter taetig.

Die Geschaeftsfuehrer und ihr Entwicklerteam beraten und begleiten Unternehmen aus unterschiedlichen Branchen ueber den ganzen Entwicklungsprozess hinweg und uebernehmen mit Hilfe von Partnerunternehmen nach Abschluss der Prototypenentwicklung auch die Serienueberfuehrung und Fertigung.

Zu den Kunden von embedded brains zaehlen unter anderem BMW, E&K Automation, Bang & Olufsen, Fraunhofer ESK und Fraunhofer ITWM, Tyco Electronics, MAN Diesel & Turbo sowie Bosch Rexroth AG.

Weitere Informationen finden Sie unter: www.embedded-brains.de

Firmenkontakt
embedded brains GmbH
Thomas Dörfler
Dornierstr. 4
82178 Puchheim
49 (0)89-18 94741-00
info@embedded-brains.de
http://www.embedded-brains.de

Pressekontakt
Lermann Public Relations
Sylvia Lermann
Enzianstr. 2c
85591 Vaterstetten
+49 (0)8106-300 899
sylvia@lermann-pr.com
http://www.lermann-pr.com

Wissenschaft Technik Umwelt

ADAS Systemvalidierung auf der Basis von realen Fahrdaten

Radar-Datenlogger verhindert Autounfälle

ADAS Systemvalidierung auf der Basis von realen Fahrdaten

Der DP²4R Datenlogger von embedded brains erfasst bis zu 4 x 320 MBit/s. (Bildquelle: embedded brains GmbH)

Zukünftig unterstützen Automobile ihre Fahrer zunehmend aktiv beim Autofahren. Über eingebaute Sensoren, Kameras und intelligente Software-/ Hardware-Systeme nehmen Fahrzeuge ihre Umgebung wahr und interpretieren diese Informationen. Derzeit entwickeln einige Unternehmen Fahrerassistenzsysteme, die über Radar-/ Infrarotsysteme das Geschehen rund um das Fahrzeug überwachen. Kernelement sind dabei spezialisierte Mikrocontroller, z.B. von NXP. Die Radardaten werden vom Mikrocontroller empfangen und weiterverarbeitet, so dass nicht mehr wie bisher die gesamten Bildinformationen weitergeleitet werden, sondern nur noch das Ergebnis.

Die Bilderfassung und -datenverarbeitung finden in einem System statt, lediglich die ausgewerteten Daten werden nach außen gegeben. Das hat den Vorteil, dass alle Funktionen in einem Gehäuse zusammengefasst sind. Allerdings bringt dieser Ansatz in der Entwicklung Probleme mit sich. Denn die Rohdaten, aus denen die Software Objekte identifiziert, sind nur chipintern verfügbar. Das hat zum Beispiel zur Folge, dass vom Fahrer während einer Testfahrt erfasste Fehler nicht analysiert werden können. Denn stellt ein Fahrer während der Testfahrt fest, dass ein Objekt vom System nicht richtig erkannt wurde, ist es nicht möglich, die Ursachen dieses Fehlers in der Software zu identifizieren.

Eine Lösung des Problems liefert der Datenlogger DP24R von embedded brains. Die Headunit des Datenloggers wird direkt an die Radarsensoren angekoppelt, so dass der Datenlogger Zugriff auf die Rohdaten hat und sie aufzeichnen kann.

Typischerweise sind vier Sensoren an den vier Ecken des Fahrzeugs angebracht, um die gesamte Umgebung des Fahrzeugs überwachen zu können. Mithilfe von vier angeschlossenen Headunits können die Rohdaten während der Testfahrten aufgezeichnet werden, wobei die Aufzeichnungskapazität des Datenloggers 10 Stunden beträgt. Nach der Testfahrt kann der Entwickler die gespeicherten Rohdaten in sein System am Arbeitsplatz einspeisen und somit entscheiden, ob die Bilderfassung fehlerhaft ist oder ob ein Software-Fehler vorliegt. Sollte letzteres der Fall sein, kann der Entwickler seine Algorithmen solange modifizieren, bis sie anhand der gespeicherten Rohdaten genau die Objekte erkennt, die sie erkennen muss.

Der Datenlogger eignet sich auch für die Entwicklung von Bildverarbeitungsalgorithmen. Für die Algorithmen-Entwicklung benötigen die Entwickler Live-Daten – kein Problem: auch diese Daten kann der Datenlogger zur Verfügung stellen. Und er bietet hierfür noch eine nützliche Zusatzfunktion: Videokameras im Fahrzeug zeichnen zeitsynchron zur Radar-Datenerfassung mit auf. Der optisch-visuelle Vergleich zwischen den verarbeiteten Radardaten und den Videos stellt den ersten Schritt bei der Entwicklung der Algorithmen dar. Der Datenlogger von embedded brains bietet die Möglichkeit, die Daten mit einem Zeitstempel zu versehen, so dass die Daten von allen vier Sensoren bei der Analyse auch zeitlich synchron wieder zusammengesetzt werden können.

Hauptmerkmale des DP24R
Das System kann folgende Anwendungsdaten aufzeichnen:
– Radar Rohdaten
– Verarbeitete Radardaten
– Verschiedene Zusatzdaten
– Datenrate: > 400 Mbit/s.

In das System können folgende Simulationsdaten importiert werden:
– Radar Rohdaten
– Verschiedene Zusatzdaten
– Datenrate: >300 Mbit/s.

Mixed-mode:
– Aufzeichnen und Einspielen von Daten

Vorteile des DP24R
– Das System ist für die meisten Mikrocontroller geeignet
– Multi-Head Design für einfache Einbindung
– Non-intrusive Datenerfassung
– Hohe Speicherkapazität: bis zu 10 Stunden

Wichtigste Anwendungsbereiche
– Fahrerassistenzsysteme
– Fahrwerks-Management
– Prüfstände, HIL

Ueber die embedded brains GmbH
Die embedded brains GmbH mit Hauptsitz in Puchheim bei Muenchen ist ein inhabergefuehrtes Unternehmen, das auf maßgeschneiderte Soft- und Hardwareentwicklung fuer leistungsstarke Single- und Multicore-Systeme spezialisiert ist. embedded brains steht den Kunden auch als Berater zur Seite und versetzt sie in die Lage, ihr Projekt selbstaendig umzusetzen. Ihre umfangreiche Expertise ermoeglicht es den Experten von embedded brains, Technologien, die sie in einem Bereich etablieren konnten, in einen anderen Bereich zu uebertragen, egal ob Telekommunikation, Industrieautomation, Consumerprodukte, Automotive, Luft- und Raumfahrt. Die Consulting-Leistung reicht von der Konzepterarbeitung, ueber die Erarbeitung von technischen Loesungsmoeglichkeiten bis zu deren Umsetzung.

Das Unternehmen wurde 2005 von den Diplom-Ingenieuren der Elektrotechnik, Peter Rasmussen und Thomas Doerfler, gegruendet. Beide verfuegen ueber mehr als 20 Jahre Erfahrung und fundierte technische Expertise in der Systementwicklung. Zuvor waren beide fuer Unternehmen wie Dornier, Eurocopter, Siemens, Alcatel Siemens, Thomson, Telenorma und Hilf Microcomputer-Consulting als Berater und Mitarbeiter taetig.

Die Geschaeftsfuehrer und ihr Entwicklerteam beraten und begleiten Unternehmen aus unterschiedlichen Branchen ueber den ganzen Entwicklungsprozess hinweg und uebernehmen mit Hilfe von Partnerunternehmen nach Abschluss der Prototypenentwicklung auch die Serienueberfuehrung und Fertigung.

Zu den Kunden von embedded brains zaehlen unter anderem BMW, E&K Automation, Bang & Olufsen, Fraunhofer ESK und Fraunhofer ITWM, Tyco Electronics, MAN Diesel & Turbo sowie Bosch Rexroth AG.

Weitere Informationen finden Sie unter: www.embedded-brains.de

Firmenkontakt
embedded brains GmbH
Thomas Dörfler
Dornierstr. 4
82178 Puchheim
49 (0)89-18 94741-00
info@embedded-brains.de
http://www.embedded-brains.de

Pressekontakt
Lermann Public Relations
Sylvia Lermann
Enzianstr. 2c
85591 Vaterstetten
+49 (0)8106-300 899
sylvia@lermann-pr.com
http://www.lermann-pr.com